June 17, 2018 - June 30, 2018 | University of Chicago
In order to prepare for SICSS-Chicago, we ask that you follow the same pre-arrival syllabus as the other SICSS locations. We are grateful to Matt Salganik and Chris Bail for preparing this reading list and the recommended Datacamp courses. In addition to the R courses posted on the main SICSS site, we have included a list of recommended Python courses.
As we discussed in our call for applications, SICSS has arranged two types of training prior to the event this summer. Some students have more sophisticated coding skills but little exposure to social science; other students have significant exposure to social science but lack strong coding skills.
The majority of the coding work presented at the 2018 SICSS will employ R. However, you are welcome to employ a language of your choice- such as Python, Julia, or other languages that are commonly used by computational social scientists. If you would like to work in R, we recommend that you complete the following courses within DataCamp, a website that teaches people how to code. Obviously, you only need to complete the classes with material that you would like to learn.
If you cannot afford datacamp, check out Chris Bail’s Intro to R slides at http://www.chrisbail.net/p/learn-comp-soc.html
The institute will bring together people from many fields, and therefore we think that asking you to do some reading before you arrive will help us use our time together more effectively. First, we ask you to read Matt’s book, Bit by Bit: Social Research in the Digital Age, which is a broad introduction to computational social science. Parts of this book will be review for most of you, but if we all read this book ahead of time, then we can use our time together for more advanced topics.
Also, for students with little or no exposure to sociology, economics, or political science, we have assembled a collection of exemplary papers in the core areas addressed by the Russell Sage Foundation. Neither your work nor the work we develop together at the institute need map neatly onto these categories, but if those with less exposure to social science read these, we will increase the chances of interdisciplinary cross-pollination, which we view as critical to the future of computational social science.
You can host a partner location of the Summer Institutes of Computational Social Science (SICSS) at your university, company, NGO, or government agency.